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Nonparametric estimation of a
discontinuity in regression
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We propose and study a new method to nonparametrically estimate a
discontinuity of a regression function. The optimal rate of convergence
n�1 is obtained under minimal assumptions. No smoothing is required.
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1 Introduction and main result

In this paper we propose and study a new method to estimate nonparametrically a

possible discontinuity of a regression function

m(x) ¼ E(YjX ¼ x),

where (X, Y) is a bivariate random vector with joint (unknown) distribution H and Y

has a finite expectation. To know such jumps is of some practical importance, since

they indicate that there will be an abrupt change in the expected output Y once the

independent variable X approaches a certain threshold, say h. Apparently HINKLEY

(1969a, b) was among the first to study, in a parametric framework, this problem, for

fixed design and normal errors. He showed that it is possible to estimate h within the

order n�1, where n is sample size. HALL and TITTERINGTON (1992) and MÜLLER

(1992) initiated the estimation of a changepoint in regression in a completely non-

parametric framework. Assuming that m has a jump at h but is (very) smooth

otherwise, their approach is based on a comparison, at each x, of one-sided

nonparametric estimators of m(x�) and m(xþ), the left- and right-hand limits of m at

x. The estimator of h is then obtained as the maximizer of an appropriate (data based)

discrepancy measuring the ‘roughness’ of m at each x. MÜLLER (1992) obtained,

again for fixed (equidistant) design and independent homoscedastic errors, that under

some heavy smoothness assumptions h may be estimated within the order (n�1þd).

For normal errors and under the assumption that h is among the design variables,

LOADER (1996) refined MÜLLER’s (1992) smoothing methodology and obtained the

optimal rate n�1. MÜLLER and SONG (1997) got the same rate through a two-step

procedure, under less restrictive assumptions than LOADER (1996). Modifications and
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extensions of this approach can be found in GIJBELS et al. (1999), JOSE and ISMAIL

(1999), KOCH and POPE (1997), LIU et al. (1997), QIU and YANDELL (1998) and WU

and CHU (1993), among others. We finally mention KHMALADZE et al. (1997), who

considered, for a multivariate X, estimating a change set G such that the conditional

distribution of Y given X ¼ x equals a given P1 when x 62 G and P2 when x 2 G.

Their method consists of maximizing a likelihood function parametrized by a

Vapnik–Chervonenkis class, under proper regularity and boundedness assumptions

on the underlying density.

It is worthwhile summarizing the assumptions and key steps needed for the

‘smoothing’ approach:

1. m should be (very) smooth outside of h.
2. Smoothing technology requires estimation of the two one-sided limits m(x�) and

m(xþ), at each x.

3. In the fixed design case, the x’s are distributed regularly with known support. For

random design, the X’s need to satisfy additional conditions, e.g., as to the support

or the tails.

4. Typically, the errors are independent of the X’s and homoscedastic.

5. Smoothing parameters to be chosen depend on other (unknown) model quantities.

In this paper, only the case of stochastic design will be discussed in detail, but fixed

design may be dealt with in a similar way. Now, assuming that Y has a finite first

moment, we have the decomposition

Y ¼ m(X)þ e, where E(ejX) ¼ 0:

Already the simplest example of a count variable, namely a 0-1 binary variable Y,

leading to

m(x) ¼ P(Y ¼ 1jX ¼ x),

shows that the conditional variance of e given x equals m(x)(1� m(x)) and hence

depends on x. In other words, though e is orthogonal to X, any independence

assumption on e and X will unavoidably limit the applicability of a proposed method.

Therefore, any method which claims to work in a reasonably broad setup, should

not use the e’s at all. Also assumptions on the tails or the support of the X’s should

be avoided if one wants to exhibit m locally.

In this paper we propose a method which avoids all this – it is a one-step

procedure, computationally simple, which circumvents smoothing and yields the

optimal rate n�1 under minimal assumptions on the model. It constitutes a modifica-

tion of an approach studied in FERGER and STUTE (1992) to detect a change in

distribution of a sequence of independent random variables. It has its origin in

U-statistics rather than smoothing methodology. See also DÜMBGEN (1991).

Our main emphasis will be on a very simple model for m, namely

m(x) ¼ a1fxOhg þ b1fx>hg: (1)
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Here, the levels a and b are unknown, as is the (marginal) distribution F of X.

Clearly, m is discontinuous at h if and only if a 6¼ b. This model seems to be very

restrictive at first sight, but as we will see later the results obtained under (1) will be

useful in quite a general setting. Our estimate of h will be computed from n

independent replications (Xi, Yi), 1OiOn, of (X, Y). A necessary assumption to

be made is

0<F(h) < 1, (2)

since, e.g., in the case F(h) ¼ 0, we don’t observe any data left to h so that a detection

of h will be impossible. The main result of our paper asserts that our estimator of h,
say hn, satisfies

n(hn � h) ¼ OP(1): (3)

We already mentioned that our approach circumvents smoothing techniques. In our

view, a discontinuity of a regression function provides much more information

through data than in the smooth case. This is expressed through the rate n�1 in (3).

Estimation of h via a smoothing may blur the relevant information resulting in worse

rates, unless one assumes heavy regularity assumptions.

We now present a brief idea of our approach. Along with m consider the function

mU(t) ¼ a1f tOF(h)g þ b1f t>F(h)g, 0 < t < 1:

The function mU is the regression function corresponding to the pair (F(X), Y). Note

that F(X) is uniformly distributed on (0, 1) whenever F is continuous. We will

introduce a function r defined on (0, 1) such that l ¼ F(h) is the maximizer (or

minimizer) of r. This approach works for general (X, Y), but r takes on a particular

and insightful form when (1) holds. It will turn out that r allows for an empirical

substitute, say rn. Its maximizer ln will finally lead to an estimator of h:

hn ¼ F�1
n (ln),

with F�1
n denoting the quantile function pertaining to the empirical distribution

function

Fn(x) ¼
1

n

Xn
i¼1

1fXiOxg

of the Xi’s.

To define r, recall H, the joint distribution of (X, Y). Put, for 0 < t < 1,

r(t) ¼
ðð

(y1 � y2)1fx1OF�1( t),x2>F�1( t)gH(dx1, dy1)H(dx2, dy2):

The idea behind r is that for each fixed t we compare the mean values of Y subject to

X being less than or equal to or larger than the t quantile of F. For a continuous F,

we obtain
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r(t) ¼
ðð

(m(x1)� m(x2))1fx1OF�1( t),x2>F�1( t)gF(dx1)F(dx2)

¼
ð1
0

ð1
0

(mU(z1)� mU(z2))1fz1O t,z2> tgdz1dz2

¼
ð1
t

ð t
0

[mU(z1)� mU(z2)]dz1dz2

¼
ð t
0

mU(z)dz� t

ð1
0

mU(z)dz

¼ (a� b)[�tF(h)þ t1f tOF(h)g þ F(h)1f t>F(h)g]: (4)

From the last expression we see that r has triangular form with

F(h) ¼ argmax r(t)

provided that a > b. Otherwise, replace argmax by argmin. Note that r is constant if

a ¼ b, i.e., if there are no jumps. This observation may be useful also when one

wants to test if there is a jump at all, the ‘hypothesis of no jump’ being rejected when

the maximal deviation of rn to be defined below exceeds a critical value.

Coming back to the estimation of h, the empirical version of r is clearly given by

rn(t) ¼
ðð

(y1 � y2)1fx1OF�1
n ( t),x2>F�1

n ( t)gHn(dx1, dy1)Hn(dx2, dy2)

¼ n�2
Xn
i¼1

Xn
j¼1

(Yi � Yj)1fXiOF�1
n ( t),Xj>F�1

n ( t)g,

with Hn denoting the empirical distribution of (Xi, Yi), 1OiOn. Introducing the

order statistics X1:nO . . . OXn:n of the X-sample with pertaining concomitants

Y[1:n], . . . , Y[n:n], the last double sum may be rewritten, for t 2 Dn ¼
f1=n, 2=n, . . . , (n� 1)=ng, as

rn(t) ¼ n�1
Xnt
i¼1

Y[i:n] � t
Xn
i¼1

Yi

" #
:

We see that rn is the normalized tied-down partial sum process of the concomitants.

Generally the concomitants are dependent random variables, so that its stochastic

structure differs from the usual (tied down) partial sum process of independent

random variables covered by Donsker’s invariance principle. Rather we shall employ

the facts, see Lemma 2.1 in STUTE and WANG (1993), that the concomitants are

independent conditionally on the order statistics and that the conditional structure of

(Xi:n, Y[i:n]) is the same as of (X, Y). Along with rn we also need the conditional

expectation process of rn:
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~rrn(t) ¼ E[rn(t)jX1:n, . . . , Xn:n]

¼ 1

n

Xnt
i¼1

E(Y[i:n]jXi:n)� t
Xn
i¼1

E(Y[i:n]jXi:n)

" #
,

from which we easily get

~rrn(t) ¼ (a� b)[�tFn(h)þ t1f tOFn(h)g þ Fn(h)1f t>Fn(h)g], (5)

the empirical analogue of (4). Also ~rrn has a triangular form with

Fn(h) ¼ argmax ~rrn

if a > b. The function ~rrn plays some role in our approach since we need to center rn
conditionally on the X’s in order to bring some martingale structure into play.

THEOREM. Assume that model (1) holds true, and that

(A1) the conditional variance of Y given X ¼ x is bounded:

Var(YjX ¼ x)Or2 < 1

(A2) the (marginal) distribution of X is continuously differentiable in a (small)

neighbourhood of h with F�(h) > 0.

Then we have

n(hn � h) ¼ OP(1):

Condition (A1) is trivially satisfied in the homoscedastic case whenever Y has a finite

second moment. In the heteroscedastic case (A1) is close to being necessary also,

since an unbounded r2(x) may then cause extremely varying Y’s so that it will be

impossible to discriminate between two levels of m. (A2) is also close to being

necessary, since it just guarantees that there are enough X-data both right and left of

h. Clearly, (2) is implied by (A2).

Note that no other conditions are required. In particular, themethod works without

estimating and comparing the ‘levels’ of m. Rather the idea behind our method is to

exhibit any significant ‘triangular structure’ through rn. Our Theorem shows that this

works under (1). For further discussion assume a > b. It is easy to see that the

Theorem also holds, when m is more general than (1), namely if

m(x)Pa for xOh and m(x)Ob for x > h:

Among this class of m’s, the model (1) is the most difficult one, since an increase

(decrease) of m(x) left (right) of h only improves the feasibility to discriminate

between two different levels of m.

What makes our approach even more appealing is the fact that it works also locally

on subintervals, i.e., rather than looking at all data, we may modify our rn to

strategically investigate a neighborhood of any given empirical quantile. In other
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words, we may fix s < u in Dn and base a search for a discontinuity of m in

[Xsn:n, Xun:n] on the process

r0n(t) ¼ r0n(t; u, s) ¼
1

n

Xnt
i¼ns

Y[i:n] �
t� s

u� s

Xnu
i¼ns

Y[i:n]

" #
,

where sOtOu. If s and u are such that the data form a fraction of the whole

sample, the Theorem may be applied to this case as well, provided that (1) holds

locally. This, however, holds true (approximately) if m has a discontinuity at some h
but is continuously differentiable in the right and left neighborhood of h. In this

sense, we agree with MÜLLER and SONG (1997), p. 324, that model (1) is the

prototype of a jump regression model.

Our final comment is on the applicability of the Theorem. The distributional con-

vergence of hn may be obtained from a detailed study of the rescaled process

Rn(t) ¼ n rn Fn h þ t

n

� �� �
� rn(Fn(h))

� �
, t 2 R:

To get the distributional convergence of n(hn � h) towards a (non-degenerate) limit,

one has to show that

(i) Rn weakly converges in the Skorokhod space D[�M, M] for all finite M

(ii) n(hn � h) is stochastically bounded

(iii) the argmax (or argmin) functional is continuous.

We see that (ii), which is covered by our Theorem, is an essential part of this

program. Actually, in (i), Rn can only be shown to converge on compacta and not on

the compactified real line. Hence, (ii) will be needed to guarantee that Rn only needs

to be studied on compacta. A full treatment of this issue will appear elsewhere, since

it is beyond the scope of this paper.

2 Proof

PROOF OF THE THEOREM. We assume that a > b so that l is a maximizer of r. We

need to show that for a given positive e there exists some T > 0 such that for all

large nP1

P(njhn � hjPT)Oe:

We deal only with the upper tails. For this, write

fn(hn � h)PTg ¼ F�1
n (ln)Ph þ T

n

	 



 lnPFn h þ T

n

� �	 

¼

[n
l¼nFn hþT

nð Þ
ln ¼

l

n

	 

:
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Since ln is a maximizer of rn, we get for each of the above l:

ln ¼
l

n

	 


 rn

l

n

� �
� rn(Fn(h))P0

	 


¼ KlPn ~rrn(Fn(h))� ~rrn
l

n

� �� �	 

,

with

Kl ¼ n rn
l

n

� �
� rn(Fn(h))� ~rrn

l

n

� �
þ ~rrn(Fn(h))

� �
:

Because of

lPnFn h þ T

n

� �
PnFn(h)

we obtain from (5)

n ~rrn(Fn(h))� ~rrn
l

n

� �� �
¼ (a� b)Fn(h)(l� nFn(h)) ¼: c(l ):

Since by assumption a > b we have c(l ) > 0 on the set fFn(h) > 0g. Moreover, the

c(l ) are nondecreasing in l. Finally, equation (5) yields the representation

Kl ¼
Xl

j¼nFn(h)þ1

(Y[ j:n] � m(Xj:n))�
l

n
� Fn(h)

� �Xn
i¼1

(Yi � m(Xi)):

Summarizing we thus get

P(n(hn � h)PT)OP(n(hn � h)PT, Fn(h) > 0)þ P(Fn(h) ¼ 0)

OP max
l

c�1(l )
Xl

j¼nFn(h)þ1

(Y[ j:n] � m(Xj:n))P
1

2
, Fn(h) > 0

0
@

1
A (6)

þ P max
l

c�1(l )
l

n
� Fn(h)

� �
j
Xn
i¼1

(Yi � m(Xi))jP
1

2
, Fn(h) > 0

 !
(7)

þ P(Fn(h) ¼ 0): (8)

Since 0 < F(h) < 1 by assumption, the law of large numbers guarantees that the last

probability tends to zero as n ! 1. To bound (6), first condition on the X’s. Lemma

2.1 from STUTE and WANG (1993) implies that the summands Y[ j:n] �m(Xj:n) are

conditionally independent and centered.

Since the c(l ) are measurable w.r.t. the X’s and nondecreasing, we may apply the

Hájek–Rényi inequality, in a conditional setup, to get

P max
l

c�1(l)
Xl

j¼nFn(h)þ1

(Y[ j:n]� m(Xj:n))P
1

2
, Fn(h)> 0jX1:n, . . . , Xn:n

0
@

1
A (9)
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O
4 � 1fFn(h)>0g

c2 nFn h þ T

n

� �� �Var
XnFn(hþT

nÞ

j¼nFn(h)þ1

(Y[ j:n] � m(Xj:n))jX1:n, . . . , Xn:n

0
@

1
A

(10)

þ 4 � 1fFn(h)>0g
Xn

j¼nFn hþT
nð Þþ1

c�2( j)Var(Y[ j:n]jXj:n): (11)

To bound (10) we may assume w.l.o.g. that

nFn(h) < nFn h þ T

n

� �
,

since otherwise the sum is empty. By assumption (A1),

Var(Y[ j:n]jXj:n)Or2:

Conclude that (10) is less than or equal to

4r21fFn(h)>0g

(a� b)2F2
n(h) nFn h þ T

n

� �
� nFn(h)

� � : (12)

Put

cT ¼ nFn h þ T

n

� �
� nFn(h),

a binomial random variable with parameter

pn ¼ F h þ T

n

� �
� F(h):

The integral of (12) is less than or equal to

(a� b)�2

ð
fnFn(h)P1,cTP1g

dP

F2
n(h)cT

O
n2

(a� b)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
fnFn(h)P1g

dP

(nFn(h))4

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
fcTP1g

c�2
T dP

s
,

by Cauchy–Schwarz. Now use the simple bound

k�2O
6

(kþ 1)(kþ 2)

to get
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ð
fcTP1g

c�2
T dP ¼

Xn
k¼1

k�2 n
k

� �
pk
n(1� pn)

n�kO
6

(nþ 2)(nþ 1) p2n
:

By (A2) and the mean value theorem, the last term can be made arbitrarily small if

we choose T large enough. Similarly, use the trivial bound

k�4O
128

(kþ 1)(kþ 2)(kþ 3)(kþ 4)

to get

n4
ð
fnFn(h)P1g

dP

(nFn(h))4
O

128n4

(nþ 4)(nþ 3)(nþ 2)(nþ 1)F4(h)
O

128

F4(h)
:

Altogether this shows that the integral of (12) can be made arbitrarily small by letting

T ! 1.

We now bound (11). From the conditional independence we obtain that (11) is less

than or equal to

4r21fFn(h)>0g
Xn

j¼nFn hþT
nð Þþ1

c�2( j )O1fFn(h)>0g
4r2

(a� b)2F2
n(h)

X1
k¼k0

k�2,

where k0 � nFn(h þ (T=n))� nFn(h)þ 1.

Now use

X1
k¼k0

k�2O
X1
k¼k0

2

k(kþ 1)
¼ 2

k0
¼ 2

cT þ 1

to finally get that the expectation of (11) is less than or equal to

4r2(a� b)�2

ð
fFn(h)>0g

2dP

F2
n(h)(cT þ 1)

which as already has been shown can be made arbitrarily small by letting T ! 1.

Summarizing this shows that (6) can be made small for large enough T. The proof of

the Theorem will be completed by bounding (7).

By definition of c(l ), the maximum equals

1

n(a� b)Fn(h)

����Xn
i¼1

(Yi � m(Xi))

����
which, however, goes to zero by the law of large numbers.

The proof is complete (
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